In a Rectivide puzzle, the goal is to divide a single rectangle into three smaller rectangles so that each small rectangle has the same ratio of gray squares to white squares as the original rectangle.

EXAMPLE Solve the Rectivide puzzle below.

![Rectivide puzzle](image)

The ratio of gray squares to white squares in the original rectangle is $4:8 = 1:2$. So, we can make groups of 3 squares in each of the smaller rectangles, with 1 gray and 2 white squares. Therefore, the area of each small rectangle is a multiple of 3.

We can split the rectangle into three smaller rectangles as shown below so that the ratio of gray squares to white squares is 1:2 in each smaller rectangle.

![Solution](image)

This is the only solution.

PRACTICE Solve each Rectivide puzzle below.

43. ![Rectivide puzzle](image)
44. ![Rectivide puzzle](image)
45. ![Rectivide puzzle](image)
46. ![Rectivide puzzle](image)
PRACTICE

Solve each Rectivide puzzle below.

47. [Rectivide puzzle image]

48. [Rectivide puzzle image]

49. [Rectivide puzzle image]

50. [Rectivide puzzle image]

51. [Rectivide puzzle image]

52. [Rectivide puzzle image]

53. [Rectivide puzzle image]

54. [Rectivide puzzle image]
We often use fractions when working with ratios. For example, a boy:girl ratio of 2:3 can be written as \(\frac{\text{boys}}{\text{girls}} = \frac{2}{3}\).

This means that the number of boys divided by the number of girls equals \(\frac{2}{3}\).

A proportion is an equation showing that two ratios are equal. There are many ways to find the missing value in a proportion.

To solve for \(x\) in the proportion \(4:7 = x:21\), we can solve for \(x\) in the equation \(\frac{4}{7} = \frac{x}{21}\).

EXAMPLE

What is the value of \(x\) in the equation below?

\[
\frac{4}{7} = \frac{x}{21}
\]

We can convert the fraction.

We can write \(\frac{4}{7}\) with a denominator of 21 by multiplying the numerator and denominator by 3.

\[
\frac{4}{7} = \frac{12}{21}, \text{ so } x = 12.
\]

--- or ---

We can isolate the variable.

To isolate the variable \(x\), we multiply both sides of the equation by 21.

\[
\frac{4}{7} \cdot 21 = \frac{x}{21} \cdot 21
\]

On the left side, we get \(4 \cdot 3 = 12\). So, \(x = 12\).

--- or ---

\[
\frac{4}{7} \cdot 21 = \frac{x}{21} \cdot 21
\]

\[
12 = x
\]

PRACTICE

Fill in the missing value in each equation below.

55. \(\frac{2}{3} = \frac{15}{_}\)
56. \(\frac{15}{_} = \frac{5}{12}\)
57. \(\frac{_}{32} = \frac{7}{8}\)
58. \(\frac{19}{11} = \frac{_}{88}\)

PRACTICE

Solve for the variable in each equation below.

59. \(\frac{3}{7} = \frac{x}{42}\)
60. \(\frac{13}{9} = \frac{a}{45}\)
61. \(\frac{w}{35} = \frac{21}{15}\)
62. \(\frac{m}{21} = \frac{9}{4}\)
EXAMPLE

What is the value of \(x \) in the equation below?

\[
\frac{5}{9} = \frac{8}{x}
\]

We can eliminate the denominators.

We eliminate the denominators of \(\frac{5}{9} \) and \(\frac{8}{x} \) by multiplying both sides of the equation by a common multiple of their denominators: \(9x \).

This gives \(5x = 72 \).

We divide both sides by 5 to get \(x = \frac{72}{5} = 14 \frac{2}{5} \).

For any equation \(\frac{a}{b} = \frac{c}{d} \), we have \(ad = bc \).

PRACTICE

Solve for the variable in each equation below. Write your answer in simplest form.

63. \(\frac{2}{3} = \frac{15}{m} \)

64. \(\frac{12}{s} = \frac{5}{8} \)

66. \(\frac{14}{a} = \frac{4}{9} \)

65. \(\frac{7}{4} = \frac{15}{c} \)

66. \(a = \) ______

67. \(\frac{2}{5} = \frac{15}{z} \)

68. \(\frac{3}{10} = \frac{10}{v} \)

67. \(z = \) ______

69. \(\frac{8}{n} = \frac{11}{6} \)

70. \(\frac{10}{7} = \frac{6}{r} \)

69. \(n = \) ______

70. \(r = \) ______